При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

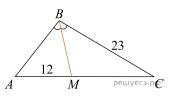
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Среди значений переменной x, равных 10; 20; 50; 105; 100, укажите то, при котором значение функции $y = \sqrt{x}$ больше 10.
 - 1) 10 2) 20 3) 50 4) 105 5) 100
- **2.** В треугольнике *ABC* известно, что $\angle A = 40^\circ$, $\angle B = 100^\circ$. Укажите номер верного утверждения для сторон треугольника.

1)
$$AB < BC < AC$$
 2) $BC < AB < AC$ 3) $AB > BC > AC$ 4) $AB > AC > BC$ 5) $AB = BC < AC$

3. Укажите номер верного утверждения:

1)
$$11^{16} = 121^4$$
 2) $-\frac{3}{7} > -\frac{4}{7}$ 3) $\sqrt{78} > 9$ 4) $0,72 < 0,702$
5) $6^{\frac{1}{5}} = 6^{-5}$
1) 1 2) 2 3) 3 4) 4 5) 5


4. Выразите *a* из равенства $\frac{3}{2b+1} = \frac{6}{a-b}$.

1)
$$a = 5b + 2$$
 2) $a = 5b - 2$ 3) $a = 15b - 6$ 4) $a = 15b + 6$ 5) $a = 3b + 1$

5. Укажите номер выражения, являющегося одночленом восьмой степени:

a)
$$2x^8yz^{-1}$$
 6) $\sqrt{3}a^2x^6y$ B) $\frac{xyz^5}{2c^{-1}}$ F) $\frac{2xy(xy)^3}{3}$ A) $2x^8y$

- **6.** В магазин поступило 43 коробки с маслом по 110 пачек масла в каждой. Какое наименьшее количество пачек масла необходимо продавать ежедневно, чтобы масло было распродано не более чем за 60 дней?
 - 1) 78 2) 81 3) 79 4) 83 5) 7
- 7. Длины катетов прямоугольного треугольника являются корнями уравнения $x^2 9x + 12 = 0$. Найдите площадь треугольника.
 - 1) 6 2) 9 3) 10,5 4) 12 5) 4,5
- **8.** Последовательность задана формулой n-го члена $a_n = 220 (n-3)^2$. Вычислите $a_{123} a_{118}$.
 - 1) -14 180 2) -13 005 3) 1175 4) -1475 5) -1175
- **9.** Дан треугольник ABC, в котором AC=32. Используя данные рисунка, найдите длину стороны AB треугольника ABC.

- 1) 10,2 2) 14,6 3) 13,8 4) 13,5 5) 10,4
- 10. Площадь осевого сечения цилиндра равна 10. Площадь его боковой поверхности равна:
 - 1) 5π 2) 10π 3) 20π 4) 20 5) 10
- 11. Упростите выражение $\frac{11\sqrt{11} + 5\sqrt{5}}{\sqrt{11} + \sqrt{5}} \sqrt{55} + \frac{12\sqrt{5}}{\sqrt{11} \sqrt{5}}$

1)
$$\frac{1}{\sqrt{11} + \sqrt{5}}$$
; 2) $\sqrt{55}$; 3) 16; 4) 26; 5) $\frac{5}{\sqrt{11} - \sqrt{5}}$.

- **12.** В треугольнике $ABC \angle ACB = 90^{\circ}, AB = 8, \text{ctg} \angle BAC = \sqrt{15}$. Найдите длину стороны CB.
 - 1) 2 2) 3 3) $2\sqrt{15}$ 4) $8\sqrt{15}$ 5) $\frac{8\sqrt{15}}{15}$

13. Укажите номер квадратного уравнения, корнями которого являются числа $x_1 - 1, x_2 - 1,$ где x_1, x_2 — корни квадратного уравнения $3x^2 - 5x - 6 = 0$.

1)
$$x^2 + x - 6 = 0$$
;

2)
$$3x^2 - 11x + 8 = 0$$
;

3)
$$3x^2 - x - 8 = 0$$
;

4)
$$3x^2 + 11x + 8 = 0$$
:

$$5) 3x^2 + x - 8 = 0.$$

14. Упростите выражение $\frac{125^x + 25^x - 12 \cdot 5^x}{5^x (5^x - 3)}.$

1)
$$5^x$$
 2) $125^x - 4$ 3) $5^x + 4$ 4) $5^x - 4$ 5)

15. Строительная бригада планирует заказать фундаментные блоки у одного из трех поставщиков. Стоимость блоков и их доставки указана в таблице. При покупке какого количества блоков самыми выгодными будут условия второго поставщика?

Постав-	Стоимость фунда- ментных блоков (тыс. руб. за 1 шт.)	Стоимость доставки фундаментных блоков (тыс. руб. за весь заказ)
1	335	1850
2	365	970
3	420	бесплатно

1) от 18 до 29

16. Упростите выражение $5\cos(7\pi + \alpha) + \sin\left(\frac{11\pi}{2} - \alpha\right)$.

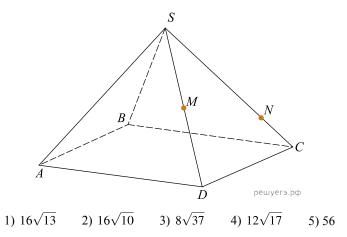
1)
$$6\cos\alpha$$
 2) $-6\cos\alpha$ 3) $-4\cos\alpha$ 4) $4\cos\alpha$

$$3) -4\cos\theta$$

5)
$$6\sin\alpha$$

17. Расположите числа $\frac{9}{\sqrt{11}-\sqrt{2}}$, $\sqrt{10}+\sqrt{3}$, $\sqrt{13}$ в порядке возрастания.

1)
$$\sqrt{13}$$
, $\sqrt{10} + \sqrt{3}$, $\frac{9}{\sqrt{11} - \sqrt{3}}$


1)
$$\sqrt{13}$$
, $\sqrt{10} + \sqrt{3}$, $\frac{9}{\sqrt{11} - \sqrt{2}}$ 2) $\sqrt{10} + \sqrt{3}$, $\sqrt{13}$, $\frac{9}{\sqrt{11} - \sqrt{2}}$

3)
$$\frac{9}{\sqrt{11}-\sqrt{2}}$$
, $\sqrt{13}$, $\sqrt{10}+\sqrt{3}$

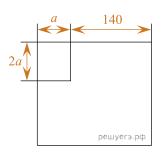
3)
$$\frac{9}{\sqrt{11} - \sqrt{2}}$$
, $\sqrt{13}$, $\sqrt{10} + \sqrt{3}$ 4) $\sqrt{13}$, $\frac{9}{\sqrt{11} - \sqrt{2}}$, $\sqrt{10} + \sqrt{3}$

5)
$$\frac{9}{\sqrt{11}-\sqrt{2}}$$
, $\sqrt{10}+\sqrt{3}$, $\sqrt{13}$

18. ##SABCD — правильная четырехугольная пирамида, все ребра которой равны 48. Точка M — середина ребра SD. Точка $N \in SC$, CN:NS=1:3 (см. рис.). Найдите длину отрезка, по которому плоскость, проходящая через точки M и N параллельно ребру SA, пересекает основание *ABCD* пирамиды.

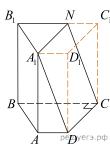
19. Для начала каждого из предложений подберите его окончание 1-5 так, чтобы получилось верное утверждение.

Начало	Окончание
A) Значение выражения $2^{-8}:2^0$ равно: Б) Значение выражения $-2^{-11}\cdot 8$ равно: В) Значение выражения $20^4:(-5)^4$ равно:	1) 256 2) -256 3) $-\frac{1}{256}$ 4) $\frac{1}{256}$ 5) 32
В) Значение выражения $20^4:(-5)^4$ равно:	1


Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбиа. Помните, что некоторые данные правого столбиа могут использоваться несколько раз или не использоваться вообще. Например: A1Б1В4.

20. Выберите три верных утверждения, если известно, что $\sin \alpha = \sin 23^\circ$ и $\cos \alpha = -\cos 23^\circ$.

- 1) $\sin(\alpha + 23^{\circ}) = 0$
- 2) $tg\alpha > 0$
- 3) $\operatorname{ctg} \alpha < 0$
- 4) а угол первой четверти
- 5) $\sin^2 \alpha + \cos^2 23^\circ = 1$
- 6) $\alpha = -23^{\circ}$


Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 234.

- **21.** В двух сосудах 57 литров жидкости. Если 5% жидкости из первого сосуда перелить во второй, то в обоих сосудах окажется одинаковое количество жидкости. Сколько литров жидкости было во втором сосуде первоначально?
- **22.** На пастбище квадратной формы загон для скота огорожен так, как показано на рисунке. Все размеры указаны в метрах. Найдите площадь загона (в $\rm m^2$), если площадь пастбища в 32 раза больше площади загона.

- **23.** Найдите произведение корней уравнения $4^{x^2} + 128 = 3^{1-x^2} \cdot 12^{x^2}$.
- **24.** Найдите сумму корней уравнения $(x 81) \cdot (9^x + 8 \cdot 3^{x+1} 81) = 0$.
- **25.** Найдите произведение суммы корней уравнения $4^{x-1} 2^{x-1} = 2^{x+5} 2^6$ на их количество.

26. В основании прямой четырехугольной призмы $ABCDA_1B_1C_1D_1$ лежит трапеция ABCD, у которой $\angle C = 90^\circ$, BC и AD — основания, $BC = CC_1$. Плоскость, которая проходит через ребро DC и вершину A_1 призмы, образует угол $\alpha = \arctan \frac{5}{3}$ с плоскостью основания (см. рис.) и отсекает часть $NC_1CA_1D_1D$. Если объем призмы равен 48, то объем оставшейся части равен ...

- **27.** Из города A в город B, расстояние между которыми 100 км, одновременно выезжают два автомобиля. Скорость первого автомобиля на 10 км/ч больше скорости второго, но он делает в пути остановку на 50 мин. Найдите наибольшее значение скорости (в км/ч) первого автомобиля, при движении с которой он прибудет в B не позже второго.
- **28.** В остроугольном треугольнике *ABC* проведены высоты *BE* и *CD*. Найдите длину *CB*, если ED = 12 и радиус окружности, описанной вокруг *AED* равен 10.
- **29.** Найдите все пары (m, n) целых чисел, которые связаны соотношением $m^2+2m=n^2+6n+13$. Пусть k количество таких пар, m_0 наименьшее из значений m, тогда значение выражения $k\cdot m_0$ равно
- **30.** $ABCDA_1B_1C_1D_1$ прямая четырехугольная призма, объем которой равен 960. Основанием призмы является параллелограмм ABCD. Точки M и N принадлежат ребрам A_1D_1 и C_1D_1 , так что $A_1M:A_1D_1=1:2$, $D_1N:NC_1=2:1$. Отрезки A_1N и B_1M пересекаются в точке K. Найдите объем пирамиды SB_1KNC_1 , если $S\in B_1D$ и $B_1S:SD=3:1$.
- **31.** Петя записал на доске два различных натуральных числа. Затем он их сложил, перемножил, вычел из большего записанного числа меньшее и разделил большее на меньшее. Сложив четыре полученных результата, Петя получил число 1521. Найдите все такие пары натуральных чисел. В ответ запишите их сумму.
- 32. Основанием пирамиды SABCD является выпуклый четырехугольник ABCD, диагонали AC и BD которого перпендикулярны и пересекаются в точке O, AO = 9, OC = 16, BO = OD = 12. Вершина S пирамиды SABCD удалена на расстояние $\frac{61}{7}$ от каждой из прямых AB, BC, CD и AD. Через середину высоты пирамиды SABCD параллельно ее основанию проведена секущая плоскость, которая делит пирамиду на две части. Найдите значение выражения $10 \cdot V$, гле V объем большей из частей.